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FOREWORD

This is a final report on the research project, "Analysis and
Computation of Internal Flow Field in a Scramjet Engine," for the
period January 1, 1987 to December 31, 1987. Special attention
during this period was directed to "Investiggtion of Supersonic
Chemically Reacting and Radiating Channel Flow." The work was
supported by the NASA Langley Research Center (Computational
Methods Branch of the High-Speed Aerodynamics Division) through
the grant NAG-1-423. The grant was monitored by Drs. Ajay Kumar
and J. Philip Drummond of HSAD-Computational Methods Branch. the
work, in part, was supported also by the 0ld Dominion University’s
ICAM Project through NASA grant NAG-1-363; this grant was
monitored by Dr. Samuel E. Massenberg, University Affairs Officer,

NASA Langley Research Center, Hampton, Virginia 23665.
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INVESTIGATION OF SUPERSONIC CHEMICALLY
REACTING AND RADIATING CHANNEL FLOW
By

Mortaza Manil and Surendra N. Tiwari?

SUMMARY

The two-dimensional time dependent Navier-Stokes equations are used to
investigate supersonic flows undergoing finite rate chemical reaction and
radiation interaction for a hydrogen-air system. The explicit multi-stage
finite volume technique of Jameson is used to advance the governing equa-
tions in time until convergence is achieved. The chemistry source term in
the species equation is treated implicitly to alleviate the stiffness asso-
ciated with fast reactions. The multi-dimensional radiative transfer equa-
tions for a nongray model are provided for a general configuration and then
reduced for a planer geometry. Both pseudo-gray and nongray models are used
to represent the absorption-emission characteristics of the participating
species.

The supersonic inviscid and viscous, nonreacting flows are solved by
employing the finite volume technique of Jameson and the unsplit finite
difference scheme of MacCormack. The specified problem considered is of the
flow in a channel with a ten degree compression-expansion ramp. The calcu-
lated results are compared with the results of an upwind scheme. The pro-
blem of chemically reacting and radiating flows are solved for the flow of
premixed hydrogen-air through a channel with parallel boundaries, and a
channel with a compression corner. Results obtained for specific conditions

indicate that the radiative interaction can have a significant influence on

" the entire flow field.

1Graduate Research Assistant, Department of Mechanical Engineering and Me-
chanics, 01d Dominion University, Norfolk, Virginia 23529.

2Eminent Professor, Department of Mechanical Engineering and Mechanics, 0ld
Dominion University, Norfolk, Virginia 23529.
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Chapter 1

INTRODUCTION

In the last several years, there has been a great deal of research
toward development of a hypersonic transatmospheric vehicle. At the
NASA Langley Research Center, the hydrogen-fueled supersonic combustion
ramjet (scramjet) engine has been a strong candidate for propelling such
a vehicle. Both experimental and numerical techniques are being
employed for a better understanding of the complex flow field in
different regions of the engine. Numerical modeling of the flow in
various sections has proven to be a valuable tool for gaining more

insight into the complex nature of these flows [1-5]*.

During the past two decades, a tremendous progress has been made in
the field of radiative energy transfer in nonhomogeneous nongray gaseous
systems. In recent years, radiation heat transfer has réceived
attention because of its application in fire and combustion research,
entry and reentry phenomena, and hypersonic propulsion. In the
hypersonic propulsion system, the temperature ranges from 1000-5000 K.
In this range, various nonsymmetric molecules such as H,0, CO, and OH
become highly radiative participating. Infrared absorption and emission
of thermal radiation is a consequence of coupled vibrational and

rotational energy transitions. Diatomic molecule is the simplest

* . . .
The numbers in brackets indicate references.

1



molecule that will undergo such transitions. However, symmetric
diatomic molecules, such as Hp, 09 and Np, have no permanent dipole
moment and thus are transparent to infrared radiation. For unsymmetric
diatomic and triatomic molecules, such as OH, CC, €O, and H,0, the

infrared spectrum will consist of fundamental vibration-rotation bands

occurring at the fundamental vibrational frequencies of the molecule

followed by the overtone and combination bands [6].

In the past, radiative transfer analysis, due to the complexity of
the formulations and the computer resource requirements, was limited to
one-dimensional formulations. Even for one-dimensional cases, the non-
gray radiative heat transfer calculations required enormous amount of
computational time. Important works in ' nongray one-dimensional

formulation are reviewed in Refs. 6-9.

Since the late 1960's, efforts have been directed toward
formulating efficient and accurate multi-dimensional equations for
radiative transfer. Latko and Pomraning [10] suggested a synthesis
method for solving two-dimensional time dependent radiative transfer
equations. The synthesis method is an attempt to reduce the computer
time requirements by constructing the two-dimensional problem from a
small number of one-dimensional calculations. The method is alternated
from cycle to cycle. On odd cycles, the two-dimensional calculation is
constructed from N one-dimensional x-direction (y=const.) cuts. On even
cycles, the two-dimensional calculation is constructed from M one-
dimensional y-direction (x-const.) cuts. Berg and Crosbie [11]
developed an exact formulation for the radiative flux and emissive power
for a two-dimensional finite planer, absorbing-emitting gray medium in

radiative equilibrium. Exact expressions were obtained for a medium



subjected to the following types of boundary conditions: (A) cosine
varying collimated radiation, (B) a strip of collimated radiation, (C)
cosine varying diffuse radiation, and (D) a uniform temperature strip.
The solution for the cosine varying collimated radiation model was used
to construct the solutions for the other boundary conditions. The two-
dimensional equations were reduced to one-dimensional equations by the

method of separation of variables.

Tsai and Chan [12] presented a general formulation of radiative
heat flux and its divergence for multi-dimensional radiative problems
involving nongray absorbing-emitting gases. The expressions obtained
are in terms of total band absorptance rather than the spectral absorp-
tion coefficients. Thus the expressions are more compact. Modest [13]
developed a new multi-dimensional model to calculate the spectrally-
integrated total radiative-flux for a molecular gas band based on the
solution of two simple differential equations. This model employs the
exponential-wide band model and, therefore, considerably reduces the
numerical efforts required. Yuen and Wong [14] solved two-dimensional
radiative transfer equations for gray medium by a point alocation method
in which the temperature profile is expressed as a polynomial of a
successively higher order. It was shown that the technique provides a
rapid convergence in comparison to the Hottel's Zonal Method [15] with
the same number of unknowns. Their approach represents a reduction in
computational time by about one order of magnitude. This technique
requires the evaluation of finite number of single integrals for a

complete solution to the problem.

In the combustion temperature range, some diatomic and triatomic

molecules are highly radiative participating species. Various



investigators have studied the effect of radiative transfer for channel
flows. Martin and Hwuang [16] solved the energy equation for steam
flowing between two parallel black walls. The flow was assumed to be
steady and the radiation transfer in the flow direction was neglected.
It was shown that the radiative flux peaks at a small distance from the
wall, instead of at the wall. This effect was also noted by Viskanta in
a gray analysis of radiation and convection between plates of constant
temperatures [17]. This is because at the wall the effect of positive
radiant heat flux from the wall is partially cancelled by the negative
flux from the layers of hot gas next to the wall. At small distances
into the stream, however, the flux from both the wall and the hot gas
combine to give a maximum heat flux. Kobiyama et al. [18] studied the
problem of combined radiation -and convection for compressible laminar
flow between two isothermal parallel plates. A comparison between
temperature profiles calculated with the treatment of one- and two-
dimensional radiat{on shows a considerable temperature difference at the
entrance region of the heating zone. The problem of combined convection
and radiation in a rectangular duct was also studied by Im and Ahluwalia
[19] for compressible turbulent flows. The moment method was employed
in this study to solve the radiative flux equation. This method reduces
the general radiation transport equations to a set of equations in x, y,
and z directions. It was concluded that the radiative transfer causes
the thermal boundary layer to grow and skin friction to decrease. The

velocity profile was not affected by the radiative heat transfer.

Chung and Kim [20] solved a two-dimensional combined mode heat
transfer problem by using the finite element technique. The effect of

scattering was also included in the radiative formulation. It was



concluded that the standard Galerkin finite elements may be used if the
convection domination is relatively small (Re Pr < 1000). If conduction
energy transfer dominates over radiation, there are few effects of
optical thickness on the temperature profile in the absence of
scattering. For converging channels, the radiation effect on the
temperature profiles is insignificant even when conduction and

convection are small.

Tiwari and Singh [21, 22] investigated the transient radiative
interactions of nongray absorbing-emitting species in laminar fully
developed flows between two parallel plates. The particular species
considered were OH, CO, COZ, HZO and different nmixture of these
species. Their results demonstrated that, H,0 is a highly radiation
participating species as compared to C0p, CO and OH. The effects of
radiation increase with increasing plate spacing, and the radiative
transfer is more pronounced at higher wall temperatures and pressures.
It was also shown that optically thin limits overestimate the influence
of radiation. Soufiani and Taine [23] studied the H,0-air mixtures for

the above geometry and reached the same conclusions.

James and Edwards [24] added the nongray radiation described by the
exponential model for molecular gas bands to the nurnerical solution of
turbulent combustion of methane in a planner, enclosed, jet-diffusion
flame. The planner jet of methane was injected with velocity Usuel into
a stream of air flowing with velocity Ui, parallel to the fuel.
Diffusion-controlled combustion occurred in the mixing region of the
jet. Plane-parallel isothermal black walls symmetrically located above
and below the jet formed the combustion chamber. A soot-free flame was

assumed to exist so that the molecular gas bands determined the thermal



radiative transfer to the walls. In this study, 40 percent of the
computation time was devoted to the radiation calculaticn. The goal of
the study was to show the effect of radiation upon combustion
temperatures for different channel sizes. Three channel widths of 0.2,
2.0 and 20.0 meters were selected. It was noted that as the channel
width reduced, the effects of radiation were also reduced, and for the

channel width of 0.2m, there was no effect on the temperature profile.

For the numerical investigation of chemically reacting and radiat-
ing flows, an appropriate chemistry model must also be selected.
Depending on the ratio of the chemical and fluid dynamic time scales,
the suitable chemistry model could be a frozen flow model, a finite rate
model, an equilibrium model, or a complete reaction model. In general,
the finite-rate model is the most accurate one. In the last several
years, a number of finite rate chemistry models for hydrogen-air systems
have been introduced in the literature. Rogers and Schexnayder [25]
proposed as many as 60 reaction paths in their model; this is certainly
one of the most complete representatives of hydrogen-air reaction.
Unfortunately, the enormous number of reaction paths and chemical
species involved in the model makes it unfeasible for numerical
investigation of engineering problems. Intermediate level models are
reduced to 12 species, 25 reaction paths, eight species and eight
reaction paths [26]. Except for some inaccuracies during the ignition
delay period, the eight reaction models perform as well as the 25-
reaction path model. Although these models are less tedious than the
60-path model, they are expected to be too costly for use in routine
parametric studies. The global two-step chemistry model of Rogers and

Chinitz [27] is an inexpensive and attractive model for primary



investigation of reacting flows. This model was deduced by fitting the
temperature history of a 28-reaction model [25] used in a series of
constant-pressure stream-tube calculations. There are a number of
limitations to this model, such as ignition phase inaccuracy and a
tendency to overpredict the flame temperature. But as pointed out
earlier, it is considered to be an appropriate model for the initial

parametric study of overall mixing and extent of combustion.

The global two-step chemistry model was used successfully by
several investigators to solve chemically reacting supersonic flows.
Drummond et al. [2] used the global chemistry model to solve the flow in
a rapid expansion nozzle. The governing equations describing the flow
were solved by the two-stage Runge-Kutta method for integrating in time,
and a Chebyshev spectral method for integrating the equations in
space. The results were compared with the two finite difference schemes
of Adam-Moulton and MacCormack. The comparison showed that the spectral
method with the Runge-Kutta Scheme gives the same accuracy on much
coarser grids as compared to the finite-difference procedure. This
results in a significant gain in the computational efficiency. Bussing
and Murman [28] solved the time-dependent Navier-Stokes equations for
supersonic reacting flows. Several efficient acceleration techniques
were used for calculating steady state chemically reacting supersonic
flows. The techniques included preconditioning the conservation
equations, and a preconditioned multiple-grid accelerator. Chitsomboon
et al. [4] used two-dimensional parabolized Navier-Stokes and
parabolized species equations to investigate supersonic chemically
reacting flows related to scramjet-engine configurations. A linearized,

fully-coupled, fully-implicit finite difference algorithm was used to



develop a computer code to solve the governing equations by marching in
space rather than time. Results obtained by using the parabolized
formulation were compared with the results obtained by using the
elliptic equations. The comparisons indicated fairly good agreement

between the results of the two formulations.

A more realistic chemistry model was used by Drummond [5] in
numerical simulation of a supersonic chemically reacting mixing layer.
To explore the behavior of such flows, detailed physical models of
convective and diffusive mixing and finite rate chemical reaction in
supersonic flow were developed. The finite rate chemistry model
consisted of eighteen reaction paths and nine species. In this study,
two numerical algorithms were constructed to solve the governing
equations. The first algorithm was developed by modifying the unsplit
finite difference scheme of MacCormack. The second algorithm employed a
hybrid pseudo-spectral technique in the normal direction to the flow for
improved resolution of the reacting flow field. The finite difference
scheme was used in the streamwise direction. It was suggested that more
attention be given to the development of spectral methods that could be
more easily applied to high gradient regions like shocks in supersonic
reacting flows. The case considered with the spectral method was
shockless and a small degree of damping was applied in the regions of
high gradients. Several important conclusions were drawn from this
study, and interested readers should refer to Ref 5. Here, it is
important to point out that the use of a more complete chemistry model
rather than the global model in the fluid dynamics equations did not

result in a set of temporally stiff equations.



Incorporation of the finite rate chemistry model into the fluid
dynamics equations can create a set of stiff differential equations.
The stiffness is due to a disparity in the time scales of the governing
equations. In the time-accurate solution, after the fast transients
have decayed and solutions are changing slowly, taking a larger time
step is necessary for efficiency purposes, but explicit methods still
require small time steps to maintain stability. An eigenvalue problem
associated with stiff ordinary differential equations (ODE) has been
solved to express this point clearly in [29]. The Titerature related to
stiff differential equations is not reviewed in this study, but there
are interesting reviews of this topic available in Refs. 29 and 30. One
way around the problem is to use a fully implicit method. This method,
however, requires the inversion of a block multi-diagonal system of
algebraic equations. The use of a semi-implicit technique, suggested by
several investigators [28, 31, 32], provides an alternative to the above
problems. In this technique, the source term which is the cause of the
stiffness is treated implicitly, and other terms in the governing

equations are treated explicitly.

The literature survey indicates that a great deal of effort has
been directed toward the formulation of radiative heat transfer
equations. Most applications of these formulations have been restricted
to nonreacting homogeneous systems. Only a limited number of studies
are available on applications of radiative energy transfer in combustion
processes rocket exhaust plume analyses, and fire research. Virtually
no efforts have been made to investigate the interaction of radiation
heat transfer in chemically reacting, viscous, subsonic and supersonic

flows of molecular species.
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The objective of this study is to investigate the effects of
radiative heat transfer in chemically reacting supersonic flow in a
scramjet combustor. The products of hydrogen-air combustion are gases
such as water vapor and hydroxyl radical. These species are highly
absorbing and emitting. The presence of such gases makes the study of
radiative heat transfer 1in chemically reacting flows an important
issue. It is essential to employ an accurate and nonoscillatory
numerical scheme to solve the governing equations involving radiative
heat transfer. This is because the rate of radiative heat transfer is
influenced strongly by the temperature and pressure of the medium.
Consequently, another objective of this study is to explore the
feasibility of employing the Jameson's four-stage Runge-Kutta time
stepping scheme [33] for the solution of chemically reacting and
radiating viscous flows. This scheme has proven to be efficient and
robust for the solution of the Euler equations. For the steady state

solution, various techniques can be implemented to accelerate the

convergence [34-36].

A brief discussion of the scramjet engine and the governing
equations are presented in Chap. 2. Chapter 3 provides the formulation
for nongray, pseudo-gray, and optically thin radiation models. The grid
generation technique and solution procedures for the governing equations
are presented in Chap. 4. Discussion of the results for several
specific cases are provided in Chap. 5, and specific conclusions and

recommendations for future studies are provided in Chap. 6.



Chapter 2

GENERAL FORMULATION

A brief discussion is presented on various components of the
scramjet engine. Special attention is directed to discussion of the
basic equations that are applicable in analyzing the flow field in
different parts of the engine. The relations for the thermodynamic and

chemistry models are also provided in this section.

2.1 Physical System and Model

As mentioned in the introduction, the scramjet engine has been a
candidate for propelling hypersonic vehicles. In Fig. 2.1, various air-
breathing and rocket propulsion alternatives are shown [37, 38]. For
Mach numbers of zero to three, turbojet air-breathing systems have the
highest performance. Above Mach number of three, turbine inlet
temperatures constrain performance, and then the ramjet becomes more
attractive. At about a Mach number of six, the performance of the
ramjet is greatly reduced. This is due to dissociation of the reaction
products, which is caused by slowing the supersonic flow to subsonic
flow through the normal shock that exists in a ramjet. Therefore, it is
more efficient to allow the engine internal flow to remain at a
supersonic speed. Thus for Mach numbers of six and beyond, the fixed
geometry scramjet is clearly superior for propelling a vehicle at
hypersonic speed. Hydrogen has been selected as the fuel for the
scramjet due to its capability of cooling the engine and the airframe
and also because of its high impulse level.

11
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The scramjet engine is made up of several identical modules and it
is installed underneath the aircraft as shown in Fig. 2.2. Each module
is made up of inlet, combustor and nozzle regions. As part of the
engine design concept [37], the forebody of the aircraft acts as an
inlet for precompression and the afterbody as a nozzle for post

expansion.

The inlet region starts with the forebody of the vehicle and ends
up with the minimum cross sectional area of each module. In the first
part, the air flow is compressed by the oblique shock generated from the
forebody before it enters the engine. For numerical solution, the flow
is best represented by the Mavier-Stokes equation in the actual inlet
area of the engine. Using the Euler equation away from the wall and the
boundary layer equation near the wall region can be complicated by
oblique shock interaction with the boundary layer. This can cause flow
separation, which means flow can not be represented accurately by these
equations. Three-dimensional Navier-Stokes equations have been employed
by Kumar [1] to investigate the flow field in this region with
reasonable success. Chitsomboon et al. [4] have employed the

parabolized Navier-Stokes equations with limited success.

The combustor region is by far the most complex part of the
scramjet engine. As a result, a great deal of research 1is directed
toward better understanding of the combustor flow field. The flow in
this region is nearly supersonic, but does have subsonic regions near
fuel injections (Fig. 2.3). The fluid dynamics become complicated by
the fuel injection, flame holding, chemistry, radiation and
turbulence. The flow field in this region is represented by the Navier-

Stokes equations (including turbulence, chemistry and radiation). In
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the farfield (downstream of the fuel injection strut, where the flow is
only supersonic), the flow can be represented by the parabolized Navier-
Stokes equations [4].

The nozzle and subsurface of the afterbody provide about fifty
percent of the thrust at Mach number six [38]. The flow through the
nozzle is supersonic. The combustor exit flow consists of multicom-

ponents of the reacting species, nmultiple shock, and 3-D viscous

effects. For engineering accuracy, the flow can be represented by the
parabolized Navier-Stokes equations.
2.2 Basic Governing Equations

The two-dimensional Navier-Stokes and species continuity equations

are represented in the physical domain by

aU , oF _ 3G _
—a-f‘.'-a-)—("“"—ay"'H‘o (2‘1)

where vectors U, F, G and H are expressed as

-~ - o n
P pu
u u2 +
P P Txx
U = pv F = puv + Txy
ok (pE + 7y ) u # Ty ¥ dex * O
afj
pfj i puf‘.\:i - pD -a—x—
=3 o -
. ) ;
-, o
P ’ Tyx 0
G=|pv +1 H=1 0
Yy 0
(E + 1 )v+r u+tgqg +4q
af, Y o -,
ovf . - oD —> ? ]
3y
L }
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The viscous stress tensors in the F and G terms of Eq. (2.1) are given

as
= p o (U 4 3Yy | u
Tyx = P A(BX + ay) 2u =X (2.2a)
= -y (3Y 4 3V
Ty u(ay + 3 ) (2.2b)
_op oL 43U, 3V _ 3V
Tyy P A(5§-+ EY) 2u 3y (2.2¢)

The quantities q.y and ey in the F and G terms are the components of

the conduction heat flux and are expressed as

3T m

Aoy = - k3g - D J.1=:1[(afj/ax)hj] (2.3a)
3T m

Qey = - k'a'f - oD jil [afj/ay)hvj] (2.3b)

where T
h, =h®+ [ C, dT; T =0K
J J T Pj o

It should be noted here that D represents the effective binary diffusion
coefficent and is used for all species. Assuming that the Lewis number

(«/D) s unity, Egs. (2.3) reduce to (see Appendix A)

= - Ju 3¢
qcx Pr ax (2.4a)
= .y 3¢
qc.y Pr 3y (2.4b)
where
e=h-P/p

The molecular viscosity, My is assumed to be temperature dependent and
it is evaluated from the Sutherland's formula as

3/2 T +5S
9 (2.5)
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where Mo and T, are reference values for individual species and S is the

Sutherland constant. In this study, reference values were selected for

pure air because the flow is dominated by nitrogen. The total internal
energy E in Eq. (2.1) is given by

2 2 m

E=P/p+ E__%%JL_ + 5 h, f, (2.6)

Specific relations are needed for the chemistry and thermodynamic

models and for the radiative. transport. The chemistry and thermodynamic

models are discussed briefly in the following sections. The formula-

tions for radiative transport are presented in Chap. 3.
Instead of solving the partial differential equations, sometimes it

is desirable to soive the integral form of these equations using the

finite volume method. The integral form of the governing equations can

be expressed as

B [fudxdy + [ Mends+ [[Hdxdy=0 (2.7)
Q N Q )

where n is a normal vector pointing outward, @ is the region of interest
and 3q is the boundary curve. In two-dimensions, the volume has a unit

depth. The second order tensor M in Eq. (2.7) is defined by
M=F i +G]i 2.8
i 1y ( )

where F and G are defined in Eq. (2.1). Equation (2.7) can be written

in Cartesian form as

3 [f udxdy + [ (Fdy - Gdx) + [[ H dxdy = O (2.9)
Q N Q
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The finite volume formulation is used with the Runge-Kutta time-stepping

scheme. The details of the formulation and the solution schemes are

presented in Chap. 4.

2.3 Chemistry Model

For the numerical solution of reacting flows, a chemistry model is
needed to represent the combustion process. The chemistry model used in
this study is the two-step, global, finite-rate, hydrogen-air combustion
model developed by Rogers and Chinitz [27]. This chemistry model was
deduced from a 28 reaction model and s adequate for initial
temperatures between 1,000 K and 2,000 K and for equivalence ratios
between 0.2 and 2.0. In the first step, hydrogen and air react and
produce hydroxyl radical, and in the second step, hydroxyl radical and

hydrogen react to produce water vapor. The reactions are expressed as

Ke
1
H2 + 02: 2 OH (2.10)
K
by
Ke
2
20H + H, —= 2 Hy0 (2.11)
K
b,
where Kf and Kb represent the forward and reverse reaction rate

i i
constants respectively. The relations for Kf are obtained from an
i
Arhenius equation as

N,
Ke = A;(o)T ' exp(-E;/RT) (2.12)
1
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The values of the parameters Ai(¢)’ Ni’ and E; in Eq. (2.12) are

Aj(e) = (8.917 ¢ + 31.433/

- 28.95)x 10%7 ~ cm3/g-mo1-$

E, = 4865 Cal/mol; N1 = -10.

1
Ay(e) = (2. + 1.333/4

- .8334)x10%% ~ cmb/mo1? - s

E, = 42500 Cal/mol; N2 = -13

2

where ¢ is the fuel-air ratio. The reverse rate constants can be

evaluated by

K¢
i
Kbi = Fﬁ" (2.13)
where
K, = 26.164 exp(-8992/T)
K, = (2.682x107%) (T) exp(69415/T)

Knowing the reaction rate constant Kf and Kb the production of species
i i
can be evaluated from the law of mass action. Consider the general

chemical reaction

N K,
'. . , ——e—e——ime I.l. N .=1 2,..., 2.
'El V3] CJ 'El Vi CJ i=1, m (2.14)
j .
by
where v3 ; and v&'i represent the stoichiometric coefficents of the

reactants and products respectively and N is the number of species. The
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law of mass action states that the rate of change of concentration of

species j by reaction i is given by [39]

(€)= ( Vi n ol 1) (
o= (v - vh. K n C. - K n C. 2.15)
J 1 J1 f‘i j=1 J bi j=1 J

The net rate of production of species j in all reactions is given by

(¢.). (2.16)

where m is the number of reactions. Finally, the chemistry source
terms, on a mass basis, are found by multiplying the molar changes and

corresponding molecular weight

w.=C. M, (2.17)
i i

By applying the law of mass action to the global model, the chemistry

source terms of the four species are obtained as

¢ =-K.,C, C. +K C (2.18)
0, fl "H, 0, "b, OH
. 2 2
& =2(k..cCo.C, -K C. ) (2.19)
H,0 f2 OH H, " b, H,0
¢ =¢ -172¢ (2.20)
H, 0, H,0
Coy = - (2 c0 + CH 0) (2.21)
where 2 2
= o f./M.
C P J/rJ
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2.4 Thermodynamic Model

The specific heat of individual species, Cp , 1s assumed to be a
i
linear function of temperature, i.e.,

C =a.T+hb, (2.22)

Pj J J

where a; and bj are constants which are obtained by curve fitting the
thermochemical data of Ref. 40. The numerical values of these constants
are given in Table 2.1. The specific heat of the mixture is computed by

summing specific heats of individual species weighted by species mass

fraction

) m
c = ¢ C f, (2.23)

m T
h=131 [(h+[ ¢ dT]f. (2.24)
j=1 J To pJ J

The total enthalpy can now be evaluated as

H=h+ 0.5 (W2 +v2) (2.25)

’

Combining Egs. (2.22), (2.24) and (2.25), the total enthalpy is

expressed as

aj T2 2 2
e bj T] fj + 0.5 (u° + v7) (2.26)
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where h° s the sensible enthalpy of individual species at a reference

temperature (To = 0 K). The gas constant for the mixture also is

evaluated by a mass weighted summation over all the species as
m
R= ¢ f_R, (2.27)

The equation of state for the mixture of the gases therefore can be

written as
P = oRT (2.28)
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Table 2.1 Numerical Values of Various Constants

23

Species H°(J/kg) a b
0, -271267.025 0.119845 947.937
Ho0 -13972530.24 0.43116 1857.904
Ho -4200188.095 2.0596 12867.46
OH +1772591.157 0.16564 1672.813
No -309483.98 0.10354 1048.389




Chapter 3

RADIATION TRANSPORT MODELS

In order to include the effects of radiative interaction in a
physical problem, it is essential to accurately model the absorption-
emission characteristics of participating species and provide a correct

formulation of the radiative transfer processes. These are discussed

briefly in this section.

3.1 Radiation Absorption Models

Many models are avai1$b1e in the 1literature to represent the
absorption-emission characteristics of molecular species; a review of
important models is available in [41]. Perhaps the simplest model is
the gray gas model where the absorption coefficient is assumed to be
independent of the wavelength. Many nongray models are also available
in the 1literature. Both gray and nongray absorption models are

discussed here briefly.

3.1.1 Gray Gas Models

In the gray model, it is assumed that the absorption coefficient is
independent of the wavelength. This is rarely a physically realistic
approximation, but it serves as an initial step for studying the effect
of radiative heat transfer. The absorption coefficient for the gray gas
is evaluated by employing the Planck mean absorption coefficient defined

as

24
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.2 (3.1)

By assuming that within a band the Planck function does not vary

significantly with the wave number, and by evaluating its value at the

band center, the relation for Kp for a single-band gas can be written as

Koy = dw 3.2
T >

where we represents the band center. For a multiband gaseous system of

n gases, “p is given by

T
ebwk ()

n
k. = I k dw
b T

(3.3)

where Wy represents the band center of the kth band of a particular

species. For a specific band of a given gas, the integrated band

intensity §p is defined as

S.<=%*f ¢ dw (3.4)
Y
Substituting Eq. (3.4) into Eq. (3.3), Kp is expressed as
Pj n

K. = I e (1) s, (T) (3.5)

P, THy) k=1 Dk k
where

C w3
ey, (1) = & [C1 5T] -1
Oy P Lio uy
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In Eq. (3.5), P; is species partial pressure, and C; and Cp are

constants [6]. Note that <p is a function of temperature and species

partial pressure.

3.1.2 Nongray Gas Models

Important nongray models available in the 1literature are as

follows:

1. Line Models:
(a) Lorentz
(b) Doppler
(¢c) Lorentz-Doppler (Voigt) /

2. Narrow Band Models:
(a) Elsasser
(b) Statistical
(¢) Random-Elsasser
(d) Quasi-Random

3. Wide Band Models

(a) Box or Coffin

(b) Modified box

(c) Exponential

(d) Axial
The relative importance and range of applicability of these models are
discussed in Ref. 41. In the moderate temperature range (500-5000K) ,
use of the wide band models and correlations provide suffigcient

accuracies. These models render significant computational efficiency

over the line by line or narrow band models.

The expression for the total band absorptance is given as

\Y

r
-[ o« (g)de
Aly) = [ [1-e ° Jdv (3.6a)
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Differentiation of Eq. (3.6a) gives
r
- x () de
A(r) = [ « e ° dv (3.6b)
av Y
r
-[ « (g) de
2 o V
At'(r) = [ ke dv (3.6¢)
Av. v

These relations are used to obtain expressions for the total radiative
flux.

The radiative flux term usually involves multiple integrals even
for the simple geometries. As a result, numerical calculations for
energy transfer becomes very time consuming. Therefore, it is desirable
to replace the re]atidn for the total band absorptance as given by Eq.
(3.6a) with a continuous correlation [8, 9, 42]. Several correlations
are available in the literature for the wide band absorptance. The
first correlation to satisfy the linear, square-root and logrithmic
limits of the wide band absorptance was proposed by Edward and Menard
[43]. The most widely used correlation is the Tien and Lowder

continuous correlation, and this is given by [42]

u+?

w2 T (3.7)

A = ¢n [uf(s) (
f(g) = 2.94 [1-exp(-2.68)]

g = B° P,

The form of f(B) was chosen to give agreement with the correlation of
Fdward and Menardo. The Tien and Lowder correlation is employed in this

study for the nongray gas formulation.
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3.2 Radiative Flux Equations

The equations of radiative transport are expressed generally in
integro-differential form; the integration involves both the frequency
spectrum and physical coordinates. To overcome the complexity of the
radiative transport equations, a tangent slab approximation was employed
in [44, 45]. This approximation treats the gas layer as a one-
dimensional slab in evaluation of the radiative flux. The multi-
dimensional equations of radiative heat transfer are formulated for an
arbitrary geometry, and then an approximate method is used to present

the formulation for gray and nongray gases.

3.2.1 Basic Formulation

The radiative transport equations in the present study are obtained
only for an absorbing-emitting medium contained within solid walls of
arbitrary configuration as shown in Fig. 3.l. The general formulation
of radiative transfer for the gas under the condition of local thermo-

dynamic equilibrium is given by [12].

M r

-f <, (€) dg , -f «,(g) dg

0 w ' ' 0 '
I (P)=1(P)e + [ "k (P") Ibv(P ) e dr
° (3.8)
The first term on the right hand side represents the contribution from
the wall to the intensity at P, and the second term, the contribution

from the intervening gases between P and P. The origin of the

coordinate system in Eq. (3.8) is chosen at the point P.
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The radiative flux at the point P in the direction of 1 s

Ge =/ [ I Ldvdn (3.9)

as
r
- -f "k (€) dg
dp = I I () e ° f dv do
r|
@ W - x,(g) dg
s L f L kP I (P e O tdr' dv da (3.10)
4w ‘0 ‘0 "V v

The divergence of the radiative flux is formulated as

v . ER = fm Tev I, dvda (3.11a)
0

dx

A beam of intensity I (r, @) traveling in the T direction satisfies the

equation of radiative transfer

I.v I=v, I, *« Iy, - B8, ! (3.11b)

\% \Y

y *t Ky is referred to

where \ is the scattering coefficients and B, y

as the extinction coefficient. For negligible scattering (yv = 0), Eq.

(3.11b) reduces to

(Iy, = L)) (3.11c)

v

>
2«9 =«
v v



By combining Eqs. (3.11a) and (3.11c), one obtains

vedp=[ [ x, (I - 1) dvda (3.11d)

Vv v

Mow substituting Eq. (3.8) into Eq. (3.11b), the divergence of the

radiative flux is expressed as

r
. . -f " (e) de
T Gg e, () Iy, (PY v ]k, ()1 (P e °
r,I
o w -[ x, (g) dg
LT e, Pk, (P T (P e dr' dv da
4 0o © (3.12)

Equations (3.10) and (3.12) are used to obtain various approximate forms

for the radiative flux and its divergence.

3.2.2 Gray Formulation

In the previous section, it was observed that the radiative flux
terms are represented by an integro-differential equation. Solving
these equations is extremely time consuming because of the complexity of
integration over space and frequency. Therefore, a pesudo-gray model is
selected for efficient parametric studies. To express the radiative
flux for a gray medium, one may assume that <, is independent of the
frequency. This is rarely a physically realistic approximation; but it
serves as an initial stepping stone towards nongray analyses.

Therefore, Eqs. (3.10) and (3.12) for a gray medium are written as

r‘W
- "elg) de r -[ «(g) dg
0
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and r
-f Y e(e) de
v e ag = dnx(P) Ly(P) - [ «(P) 1(P) e ° da
o
- -[ «(g) de
S YR k(P 1 () e © dr' do
AL (3.14)

To solve the radiative flux terms for the gray medium, one can transform
the above equations into the Cartesian coordinates and then apply any of
the standard integration techniques to evaluate the radiative flux
terms. It is a lot more convenient and efficient to convert the
equations to a set of ordinary differential equations (ODE). For the

present case, differentiating Eq. (3.14) by using the Leibnitz rule

results in r
Y k() de
2 9y, 2 0
VT ap = 4K(P)'§F‘ + £ k (P) I(Pw) e de
T
r‘l
Fu -f «(g) de
s [ &"(P) k(Pr) Ip(P) e © dr' do

n o (3.15)

A substitution of Egq. (3.15) into Eq. (3.13) gives a second order

nonhomogenious ordinary differential equation as

o dey,
'd—rz—' - K (P) qR = 4K(P) -a—r—- (3.16)

It should be pointed out that if the tangent slab approximation is
employed, then the method of exponential kernal approximation is used to
convert the equations to a set of ODE's. The result is of the same form

as Eq. (3.16) but the coefficients are different, i.e.,
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2
d-q de
R_9 2 _ b
—5 7K (P) qR = 3 «(P) I (3.17)

Equations (3.16) and (3.17) differ in the coefficients due to the
employment of the exponential kernal approximation in the second
approach. These equations require two boundary conditions. For
nonblack diffuse surfaces, the boundary conditions corresponding to Eq.

(3.17) are given as

dq

1 1 1 R _

(G2 %D lre0 = 3@ lre0 7 O (3.18a)
dq

1 1 1 "R _

(EE - 7) *p R (r) |r=L Y3 |r=L =0 (3.18b)

Detailed derivation of Eqs. (3.17) and (3.18) are given in [44].

3.2.3 MNongray Formulation

For simplicity in notation, it is assumed that the molecular gas
has only one band. The following analysis is also applicable to the gas
having more than one band. Since the Planck function within a wide band
can usually be approximated by its value at the band center, Egs. (3.10)

and (3.12) can be written as

-f M (g)de
> o) >
9 = £“ £v Iv(Pw) (e - 1] % dv da + £“ £v Iv(Pw) g + dv do
rl
"w -[ x,(g) de
#f f 1, (P)Tdrida [ < (P')e ° dv (3.19)
4 o ve Av
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and o
- 7w (g) de
r . 0
VeQp = dn Ibve(P)(iv k _dv) £" Ivc(Pw)[iv Kv(Pw)e dv]da
r.I
" =[x, (g)de
w ' > t 1 0 '
+ £ [ 1y, (P Tdride [ o (P) e dv]dr'da (3.20)
" Av
Substituting Eqs. (3.6a-3.6¢c) into Egs. (3.19) and (3.20), rearranging,
one gets
4o = [ 1(P) Pda- [ 1.(P)A() ¢ do
4y 4q
w
+ £ [ Iy, (P)AY(FY) 1 dr'da (3.21)
™ 0
> : r‘W
VeGp = 4n Iy C(P)A'(O) -1 c(Pw)A'(rw)dn [ ] c(P')A"(r')dr'dsz
v 4g ¥ 47 ‘0 Y (3.22)

The first term on the right hand side of Eq. (3.21) represents the
radiative flux in the absence of participating medium; the second term
gives the portion of the wall radiation which is absorbed by the gas,
and the last term indicates the emission from the gas which arrives at

point p. Since I, and A' are independent of @, the first term in Eq.

(3.22) can be written as

4n 1, (P)A'(0) = £" I, (P)A'(0)dn
£" Iy (P)A' (r, )da + £ﬂ Ip,c (PITA(0)-A"(r, ) ]da
r
= £" I, (PIA'(r,)de £" £ W I (PYA (r)drida  (3.23)



A substitution of Eq. (3.23) into Eq. (3.22) results in

v . d - I [Tp,c(P) = Ic(P)T A'(r,)dn

- £“ f:w [T c(P) = Tp,c(PP)]A (r)dr'da (3.24)
The first term on the right hand side of Eq. (3.24) represents the net
exchange of radiation between the gas element at P and the walls; the
second term represents the net exchange between the gas element of P and

the other gas elements.

For a nongray planer system with two parallel walls at different

temperatures (Fig. 3.2), Eqs. (3.21) and (3.24) reduce to

o o Y | | 1
Gomep-ep-f [ T ey (x', 2') A(ry) St

-~ «n 0 1 nrl

and
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- I“ j“ evcz(x.’ Z') A'(rz) L:x_dxl dz"'
—® - r,
© o L ' A (r')
-1 eyl vy 2) s e (X y, 2] -~ dx' dy' dz’
0 mr (3.26)
where
1/2
ey = [xex)? + (07 + (2227
‘ 1/2
ro = [(X-X')2 + (y-L)2 + (2-2')7)
1/2
et [xex)? + (yey) + (2207

The y coordinate is normal to the wall and x and z coordinates are in a

plane parallel to the wall. For one-dimensional radiative transfer,

Eqs. (3.25) and (3.26) reduce to

aR = el - 92 = Vcl A(Y) + eVCZ A(L‘Y)
y L
+f e (y') ANy-y )y - f e (y') AT(y'-y)dy”
o]
(3.27)
and
v ey =le (y)- vcllA'(y) e, - ey ] A'(L-y)
y
- fo [e,c(y) - e (y")]A" (y-y')dy’
L
[ le,cy) - e, (y) e (y)]A"" (y'-y)dy (3.28)
y
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Equations (3.27) and (3.28) can be rearranged and written for a multi-
band gaseous system as (see Appendix B)
N y
qR(.Y) =el'e2+ L {J’ Fl\)C (.yI)A.;(y".yl) d.y'
izl o i
L
- f szc'i(y ) A’i (y'-y)dy } (3.29)
and
N
veap(y) = I {[Fpe )+ Faue 11k, dvs
i=1 i Bv; i
y ] 1 ] ]
[ Fp ) AL (y-y') dy
0 i
L
t Foue. (¥') A (y'ey) dy' (3.30)
0 i
where
Flocly) = e, ly) - ve,
and

Focly) =e (y) -e

The equations resulting from employing the tangent slab
approximation and exponential kernal approximation for evaluating the
exponetial function are of the same general form as Eqs. (3.29) and

(3.30). These equations are derived in detail in Ref. 9 and are

expressed here as
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3,/ 0o (3 . .
agly) = e - e +5 {fo Flwci(y ) Ad [ (y-y')] dy
L ] 1 3 ] !
- fy Fzmci(y ) A} [ (y'-y)]d'}  (3.31)
and
3 n
. = > F k duw
veap(y) =3 1_51 { le,l(‘Y) chi(y)] fAmi g il
n
tr iil {f Flwc1(y') As [% (y=y')]dy'
L t t 3 ' 1
+ fy Fzmci(y ) AL (5 (y'-y)]dy'} (3.32)

Equations (3.29-3.32) are in proper form for obtaining the nongray
solutions of molecular species. However, in order to be able to use the
band model correlations, these equations must be transformed in terms of
the correlation quantities. For the temperature range considered, the
radiative process is in the optically thin limit [39]. As a result,
there is no significant difference between the two approaches. It
should be noted here that for nongray gases, the divergence of radiative
flux is used as a source term in the energy equation. This is more
convenienp and also avoids scheme dependency in the computation. The
correlation quantities and details of transformations are given in Ref.

20. After the transformation, Eq. (3.32) is written as
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dap(u) 4 n U =, .3
U 2-121 Aoi {Io Flw1(u ) As [E'(u1 i} ui)] du
u
c } 3
HL e, W R -] )
u, 1
i
3 N
+3 1 R [y, () * P ()] (3.33)

Note that A''(u) expresses the second derivative of A(u) with respect

to u and

By defining %—- % and %—-= {;, Eq. (3.33) is expressed as
0

0
n Uo
g ()dy =908 1 A @240 R () R Bt ()]
ap \y)/dy 151 o, o, {fo lmi y i [?'—Tf' y-y')] dy
u
+ F (y") K 3 o'i (y' dy’
fy 20 il '] v’}
3 0 loj’;
r7 I T [Flo, (") Fa, V1] (3.34)
1= 1 i

It is often desirable and convenient to express the proceeding
equation in terms of A' rather than A''. This is accomplished by

integrating Eq. (3.34) by parts. The detail of the integration by parts

is given in Ref. 9 and the result is given by
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dq n o Yo, y dew,(y") Y.
~-3 L By G e
vy 7 . TL " > (y=y')]dy
i=1 0
L dewi(Y') .3 uoi
-fy 7 A T W)l (3.35)

Equation (3.35) and the Tien and Lowder correlation given by Eq. (3.7)

can be used to evaluate the radiative flux.

3.2.4 Optically Thin Formulation

In the optically thin 1imit, the fluid does not absorb any of its
own emitted radiation; however, it does absorb radiation emitted from
the boundaries [6-9]. In general, the optical thickness of an

absorbing-emitting system is defined as
t=f e dy | (3.36)

If it is assumed that Ky is independent of the temperature, then Eq.

(3.36) is expressed as

. =x L (3.37)

A radiating system is considered to be in the optically thin limit when

< < .
Tow 1

In the optically thin limit, the expressions for the radiative flux
and its divergence can be obtained from the general expressions by
following the procedure outlined in [6]. For the gray gas approximation
and black-bounding surfaces, Eq. (3.14) is expressed for one-dimensional

optically thin radiation as
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dq
R _
" 2 €, [2 ebm(y) - ebl - eb2] (3.38)

For the pseudo-gray gas model, K, is replaced by <p through use of Egs.
(3.1) - (3.5)0

For the case of nongray gas formulation, A(u) = u and A'(u) =1 in
the optically thin limit [6, 7]. Consequently, Eq. (3.35) reduces in

this 1imit to

A u
dqR_3; 0y °i[2e

Era L e ] (3.39)

(y) - e -e
: log 2wy

w

It should be pointed out that it is considerably more efficient to
solve numerically the system of governing equations for the case of
optically thin radiation than for the general case. In a preliminary
study, the optical thickness of the present physical problem were
calculated. It was found that the optical thickness varied between

0.003 to 0.4 in the temperature range of 1,000 to 5,000 K and pressure

between one to three atmospheres.



Chapter 4

METHOD OF SOLUTION

The grid generation technique and solution procedures for the
governing equations using the unsplit MacCormack [46] technique and
modified Runge-Kutta time stepping scheme of Jameson [32] are briefly

discussed in this section.

4,1 Grid Generation

Grids are generated dsing an algebraic grid generation technique
developed by Smith and Weigel [47]. From the computational point of
view, it is desirable to have a uniform rectangular grid enclosed in a
cube, where the exterior of the cube represents the physical boundaries.
To have such grids, the body-fitted coordinate system is transformed
linearly from the physical domain (x, y) to the computational domain

(g, n) as follows:

xl = X (g,0) Lower

(4.1a)
yp = ¥ (¢,0) Boundary
X, = X ,1
T X -~
Yy = Y (g,1) oundary
X=X (g,1) n+ X (£,0) (1-n) Setween the e
. e
y=Y (g,1) n+Y (£,0) (1-n) Boundaries

42
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where
0<g<l ;0<nx<l

The grid should be concentrated in the regions of high gradients to
accurately predict the solution. Therefore, more grid points are
required near the solid boundaries. The concentration of the grid
in the n-direction can be accomplished by

(8 +1) - (8,-1) exp[-C(n-1+a)/(1-a)]

- _ Y Y
n- [2a+1) {1+exp[1C(n-1+a)/(1-a) ]} (4.2)

where g +1
C =2n (Ef:T)

If « is equal to zero (a=0), the compression takes place only near the

lower wall (n=0), and if o 1is set equal to one half (a=1/2), the

compression takes place near both walls. The term By has a value

between one and two, and as it gets closer to one, the grid becomes more

concentrated near the walls. Employing this concentration, Eg. (4.1e)

is written in terms of n as

X =X (g,1) n + X (g,0) (1-n)
y =Y (g,1) n+Y (g,0) (1-n) (4.3)
where
0<ncxl

It should be noticed that the grid is concentrated in the normal
direction to capture the boundary layer and kept uniform in the flow

direction.
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4,2 Solution of the Govening Equations

4.2.1 Modified MacCormack's Finite-Difference Scheme

The governing equations, Eqs. (2.1), are expressed 1in the

computational domain as

sU . oF . 3G . & _

=t +_8-E +'3; +H=0 (4.4)
where

U=U

F = Fyn - Gx

G=0Gx, -F

Xg = e
H= H
Jo=xp ¥t Y X,

Equation (4.4) is discretized temporally and written as

&n an
“n+l _ on oF 36 an+l
= - - + + .
U U" - at [ag  t H ] (4.5)
The source term gn+1 must next be linearized. It is expanded in a

Taylor series in time to give

AL an e %% + 0 (at)? (4.6)
or
. . an+l o an
3U A

A substitution of Eq. (4.7) into Eq. (4.5) gives the temporally discrete

equation in delta form as
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>
>

~

aH,  An+l _ aF . 3G , 340
[I + at -8—0] al = -At [-5— +ﬂ+ H] (4.8)

™

where Gn+1 - 0" s expressed as A0n+1, 3@ is the Jacobian matrix of H
aU
and I is the identity matrix. The components of the Jacobian matrix are

given in Appendix C.

Once the temporal discretization used to construct Eq. (4.8) has
been performed, the resulting system is spatially differenced using the
unsplit MacCormack predictor-corrector scheme. This results in a
spatially and temporally discrete, simultaneous system of equations at
each grid point. Fach simultaneous system is solved using the
Householder technique [48, 49] in combination with the MacCormack
technique, which is then used to advance the equations in time. The

modified MacCormack scheme then becomes

>
>

[T+ at (-:-E'-)’].’j] AGT = - at [%E + 22+ ) (4.9a)

u:‘_ff =07+ s -:‘_J‘Cl (4.9b)

[I + at (EE-?'] AG?}I = - at [%é + %%-+ g]?jT (4.10a)
3u 1J

G?}l = 0f; + 0.5 [Aﬂg‘;l + Aﬂf.‘?] (4.10b)

Equations (4.9) and (4.10) are used to advance the solution from
time n to n+l, and iteration process is continued until a desired

integration time has been reached.
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4.2.2 Modified Runge-Kutta Finite-Volume Technique

In 1981, Jameson, Schmidt and Turkel [33] proposed an explicit
finite volume technique uéing Runge-Kutta time stepping scheme for the
solution of unsteady Euler equations. The scheme is a modified version
of the classical four stage Runge-Kutta technique. The method is
fourth-order accurate in time for linear equations and second-order
accurate for nonlinear equations. The scheme is second-order accurate
in space for both linear and nonlinear problems, provided the grid is
sufficiently smooth. This scheme was extended by Swanson and Turkel
[35] to solve the thin layer Navier-Stokes equations for transonic flow
over the airfoil. In the present work, this scheme is being extended to
solve supersonic chemically reacting and radiating viscous flows. The
governing equation, Eq. (2.9), in integral form for a region Qq with
boundary 3 is rewritten here for the convenience as

%t—sj;fdedy+gQ (F dy - G dx) +£J’dedy= 0 (4.11)
The discretization procedure follows the method of lines in decoupling
the approximation of the spatial and temporal terms. The computational
domain is divided into quadrilateral cells (Fig. 4.1), and Eq. (4.11) is
applied to each cell separately to obtain a system of ordinary
differential equations. The resulting equations are solved by the

finite volume scheme of Jameson.

Applying Eq. (4.11) to an arbitrary cell, ABCD, and approximating

the integrals by the midpoint rule, one obtains

d =
Hf'(Aij Uij) + L Uij + Aij Hij =0 (4.12)
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Equation (4.12), with the inclusion of artificial viscosity, is written

as

d )
Go (Rig Ugp) # L Ugg =D Ugy + gy Hyy =0 (4.13)

where L is the spatial discretization operator, and

L Uij = FLXAB + FLXBC + FLXCD + FLXDA (4.14)

The components of Uij are now cell averaged quantities; Aij is the cell
area of ABCD. The vector FLX represents the fluxes through the cell

sides. For example, FLXpp is written as follows

G (4.15)

FLXag = Fag 8Yag = Gag 2%pp

where Fpp and Gpg are viscous and inviscid fluxes through the side AB

and

Xq = X

Yo = Y R A

aY g = Tai Mg *

AB

Inviscid fluxes are evaluated from two adjacent cells as

)

(F (F (4.16)

ag)iny = (Fig * Fijo1)iny/?

To evaluate the viscous fluxes on the cell sides, one must evaluate u,

and Uy« These components are evaluated from Green's theorem as follows:

1 1

= (u ), . = [ u, dxdy 0 udy (4.17a)
x'1,3-1/2 " Ry 5172 i Ri.3-1/2 3

~~
c
x
~—
>
(v~
]

1 1
(U )pp = (U ). = u, dxdy = - y——— u dx (4.17b)
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In discrete form, u, for the cell side AB in Fig. 4.1 is written as

(U )pa = 1 (ue AY. + Uy AY, + U
xS S 1, ECET BOE

aAYo + Up AYA) (4.17¢)

FA'F

Velocities at the cell corners are evaluated from the four adjacent

cells, and Ai,j-l/z is evaluated as

21
SREV RS AR IR NEY

4.2.2.1 Boundary Conditions - So far, only the interior cells have

been considered. The implementations of the boundary cells are consider
in this section. These include supersonic inflow and outflow, and slip
and nonslip wall boundary conditions. To determine the inflow
quantities, the flux vectors will be evaluated based on the free stream
conditions. For outflow conditions, the quantities are extrapolated

from the interior points. For the inviscid flow at the solid wall, a

zero wall flux condition is implied, that is
T as=0 (4.18)

where V. is the normal wall velocity and aAS is the wall cell surface

area (Fig. 4.2a). Equation (4.18) is written in Cartesian coordinates

as
Vn AS = u Ay - V AX
Thus for inviscid flows, the net fluxes through face 2 (Fig. 4.,2a) are
[(Fdy - Gdx) =0 Continuity Eq.

f(Fdy - Gdx) = (P ay) X-mom. Eq.
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[(F dy - G dx) = (-Pax) Y-mom. Eq.

Energy Eq. (4.19)

n
(]

[(F dy - G dx)

Pressure at the wall is evaluated by

- 3P
Py ™ Pi,l Ty VY + 0 (ay

2
)
The pressure gradient is calculated using the three point differencing

method. For viscous flow, pressure gradient is set to zero (boundary
layer assumptions).

Finally, the no slip boundary conditions for viscous flows must be
considered. The wall fluxes are divided into inviscid and viscous
parts; the inviscid parts are evaluated from Egs. (4.19). For viscous
flow, the velocity component tangent to the wall must be zero. As the

result of this constraint, the viscous flux vector is nonzero. For

example, %%and %}can be computed on face 1 in Fig. 4.2b as
au_ Up AXA + ug AXB *oug AXc (4.20a)
3y Angcd
aT _ Ty 8Ky + Tg AXg + To aKe + Ty 8%y
3y AngcD
TD = 0.5 (Ti,l + Ti+1,1) for an adiabatic wall

For face 4, the gradient of T and u are evaluated from the ghost cell

CDEF.
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3T TC AXC + TF AXF + TE AXE + TD AXD
- " 7 (4.20b)
4 i1
TD = TF = TE = Ti,l for an adiabatic wall
Th =T =T, for constant wall temperature
Te=Tin 20 =Ty
and
au _ ug AXg + ue AXe -
ay Ai,l E C
Note that aX is direction dependent (AXc = - AXE).

4.2.2.2 Artificial Viscosity - The finite volume scheme (Eq.

(4.12)), unlike the MacCormack scheme, is not inherently dissipative
and, therefore, it does allow undamped oscillations with an alternate
sign at odd and even grid points. To prevent large oscillations caused
by a discontinuity, some kind of artificial damping must be added to the
scheme. The original damping proposed by Jameson et al. [33] is a blend
of second- and fourth-order differencing. The basic idea is to add the
fourth-order dissipative terms throughout the domain to provide a base
level of dissipation sufficient to prevent nonlinear instability, but
not enough to prevent oscillations in the neighorhood of shock waves.
For the linear problem with central differencing schemes, the
neighboring points decouple. This odd-even decoupling prevents the
possibility of driving the residual to machine zero. For the nonlinear
equation, the values are evaluated at the cell sides before evaluating
the fluxes. This nonlinearity couples all the neighboring points
together. However, this coupling is weak and convergence to a steady

state can be slow [33]. In order to capture the shock waves, additional
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second-order dissipative terms are added locally by a sensor designated
to detect the shock waves. In recent years, Jameson has modified the
original damping to lead to a scheme which will behave locally like a
TVD scheme [50, 51]. Both dampings were tested in this study by solving
the two-dimensional Euler equations. The TVD damping prevented the pre-
and post-shock oscillations which were observed when the original
damping was used. The results of the two dampings are compared in the
next chapter. The original dissipation and the TVD dissipation schemes
modifications are outlined here. To preserve the conservation form, the
dissipative terms are generated by dissipative fluxes. The damping term

in Eq. (4.13) is calculated from

04,5 (W = dinijz,g ~ Yimnyz,g * ez Gigee (R
where the dissipative flux di+1/2,j is defined by
= (2) -
divrsz,g = si+ize,g Riviz,g Mieng ~ Yy
- 4) - -
civ1/2,5 Risrsz,g Uinz,g ~ 3 Yien,s % Vi 7 Vicnyg)
(4.22)
Here 5(2) is an 5(4) are adaptive coefficients and R; . is a
' Bi41/2 i+1/2,3 P i+1/2,]

coefficient chosen to give the dissipative terms the proper scale. An

appropriate scale is [50]

i

A, ., . A, .
1 Ji+l,5 1Jg) (4.23)

Rivt2,s 72 W, ;T oY

An effective sensor of the presence of a shock wave can be constructed
by taking the second difference of the pressure. Define

P. . - 2P, .+ P, .
Ve. = 'H'l,J 2P1a~] 1'1aJ
W TP,y * e,y 7 kL

(4.24)
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and set
Sierj2,9 = ™X0iag 50 Vien,ge V1,50 VieLg)

The coefficients (2) and 4 in the original form were written

€i+1/2,3 ©i+1/2,j
as

(2) - el(2) -
€i41/2, ] K Visl/2,] (4.25a)

and

ESi%/z’j = maX[Oo, (K(4) - E'(iE%/Z,j)J (4-25b)
where

k(2) = p.25 and k(%) = 17256

The modified coefficients 5(2) and 5(4) that have approximately the TVD

property are written as

ef2) g = min g K@ 50 0 (4.26a)
and

egii/Z,j = max(0., K(4) -a :)1._’.1/2,\]-) (4.26b)
where

k@ 21, k) 21768, andq =2

In a smooth region, 5(2) is proportional to the square of the mesh width
and e(4) is of order one, therefore, dj41/2,j in Eq. (4.22) is of order
three. In the shock region, 5(4) is zero, and, therefore, the fourth-
order damping is cut off to prevent oscillation, and 6(2) is of order
one, so that the scheme behaves locally 1ike a first-order scheme.

However, this does not effect the global second order accuracy of the

finite volume scheme [35].
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4.2.2.3 Time-Stepping Scheme - Equation (4,13) 1is discretized

temporally and written as

n+l n

« o - LK +1
y (_.lJ_A_t-A]+LUT.j-DU1.j+A1-j H?J. =0 (4.27)

A
Substituting Eq. (4.7) for the source term, Eq. (4.27) is written in
delta form as

aH\n ntl _ At n n n
[T+ at (5p) ] av = -7 (L Uij -D Uij + Aij Hij] (4.28)

To advance Eq. (4.28) in time, the modified four-stage R-K technique in
combination with the householder technique [46, 47] is employed. At

time level n, the scheme is written as

(0 = y(m

aH k _ At K-1 n
[T+ at (3p)] aU" = - akm[L URTT - DU0) + Ayy Hyy ]
UK = U0 + AUK

K=1,4 ay = 1/4, ap = 1/3, ay = 1/2, ag = 1

u(ntl) _y(4)

For efficiency purposes, the natural and artificial viscosities are

evaluated at the first stage and frozen for the remaining stages.

For time accurate solution, the computational time step, at, must
satisfy the smallest time scales of the fluid and chemistry, i.e.,
At = min (Atf, Atch). If the steady state solution is sought (as in

this study), it is possible to speed up the convergence by using a
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larger time scale due to the so-called preconditioning matrix (left hand
side bracket in Eqs. (4.8) and (4.28)), the purpose of which is to
normalize the various time scales so that they are of the same order
[28]. To further speed up the convergence, the solution is advanced in
time with a time step dictated by the local stability limit. In the
present work, the local at is based on the Courant-Friedrichs-Lewy (CFL)
stability limit. Local time stepping allows faster signal propagation,

and thus faster convergence.

The radiative flux term is evaluated for both gray and nongray
gaseous systems. In the nongray gas formulation, the divergence of the
radiative flux is evaluated using a central differencing scheme and is
treated as radiative source term in the energy equation. Since the
radiative flux term is in integro-differential form, unlike the other
flux terms which are only in a differential form, it is uncoupled and
treated separately. In the gray gas formulation, Egs. (3.17) and (3.18)
are discretized by central differencing, forming a tridiagonal matrix
(see Appendix D). This tridiagonal matrix can be solved efficiently by
the Thomas algorithm. The radiative fluxes and chemistry rates are

evaluated at the first stage and frozen in the remaining stages.



Chapter 5

RESULTS AND DISCUSSION

Based on the theory and the computational procedures described
previously, two algorithms were developed to solve the two-dimensional
Navier-Stokes equations for chemically reacting and radiating supersonic
flows. The performances of two damping schemes are compared by solving
the Euler equations for supersonic flow through a channel with a ten
degree compression-expansion ramp (Fig 5.1). Then, the Navier-Stokes
equations are solved by a finite difference and a finite volume scheme,
and results are compared with another computational method. Finally,
the extent of the radiative heat transfer in supersonic chemically

reacting flows is investigated.

For simplicity in the rest of this discussion, the original damping
is referred to as Dampl and the modified TVD version as Damp2. In the
numerical experiment with Dampl, it was found that the tangential
component of the second order dissipation (e(z)) becomes large at the
inlet region and this causes the flow to separate near the boundary.
The excessive damping is because of the pressure jump caused by the
leading edge shock. This behavior was also observed by Turkel [34] at
the leading and trailing edges of the airfoil. He suggested multiplying
the viscosity by (M/Mw)4. Chen et al. [52] suggested multiplying
6(2) by a linear factor which is zero near the boundary and one in the
farfield. The coefficients k(2) and k(4) nust be readjusted each time
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by changing the free stream conditions or the grid size. The above
problems make Dampingl Tless desirable. On the other hand, Damp2 Teads
(2)

to a scheme which will behave locally like TVD scheme as long as ¢

in Eq. (4.26a) is equal to 1/2 in the neighborhood of a shock wave.

5.1 Non-Reacting Flows

The non-reacting flow equations are solved first for inviscid and
then for viscous flows. The inviscid flows are considered for comparing
the performance and accuracies of two damping schemes (Dampl and TVD
Damp) in the finite volume scheme. The results are compared with
calculated results of the inviscid flow by the finite difference scheme
of MacCormack. In the remainder of this chapter, wherever finite
difference and finite volume schemes are referred, the reference is to

the MacCormack and Jameson schemes, respectively.

The Euler equations were solved for ideal gas flowing at M= 5,
T, = 293 K, and P = 1 atm in the channel with a compression-
expansion ramp (Fig. 5.1). A 51x51 grid with uniform spacing in both
the flow and normal direction was used to solve the flow. Figures 5.2-
5.4 show the results for the temperature, pressure, and density
variations, as a function of x for three locations across the channel
(1ower boundary, center of the channel and upper boundary). The results
are obtained by employing the finite volume scheme with Dampl. Similar
results are illustrated in Figs. 5.5-5.7 when Damp2 is employed in the
finite volume scheme. Comparing the results of Figs. 5.2-5.4 with the
results of Figs. 5.5-5.7, it is seen that pre- and post-shock oscilla-
tions are removed by employing Damp2. As mentioned previously,

employing Damp2, the scheme behaves locally like a TVD scheme as long as
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the coefficient 5(2) is set equal to 1/2 in the neighborhood of a shock
wave. The temperature, pressure, and density evaluated by the finite
difference scheme are plotted at the lower wall, center of the channel,
and the upper wall in Figs. 5.8-5.10, respectively. The density at the
lower wall is slightly overpredicted in comparison to 1déa1 gas flowing
through a ten degree shock; consequently, the temperature is slighly

underpredicted.

For the solution of the viscous flow, two test cases were selected.
The first case considered in that of a supersonic flow over a flat plate
and the second case is of a supersonic flow in a channel. The simplest
way to test the behavior of a Navier-Stokes solver is to solve for the
flow with a low Reynolds number over a flat plate. In this case, a
temperature equal to the stagnation temperature was specified at the
wall. Using the fluid properties specified in Table 5.1 and a uniform
grid distribution, variations in the temperature and the two velocity
components were calculated at the exit plane and these are plotted in
Figs. 5.11-5.13. The profiles show very good agreement with the
calulations performed by Carter [53]. The oscillation observed in Figs.

5.11 and 5.12 are due to the bow shock from the plate leading edge.

In the second case, the solutions are obtained for the supersonic
flow in the channel with a compression-expansion ramp. The free stream
properties considered areM_ =5, T, = 293K, and P_ = 0.1 atm. The
corresponding freestream Reynolds number at the exit plane is about
1.1x10%. This is a significantly more difficult case compared to the
first case. To capture the boundary layer, the grids are compressed
near the boundaries; consequently, the grid aspect ratio becomes very
large. The non-uniformity of the grid creates significant problems

for some schemes. For example, the finite volume scheme with Dampl



CTTETTR)S
32U3J3441p 33LULy AQ MO|J PLISLAUL JOJ X YILM uorjeLJder dunjesadud] §°§ *614

a X
ﬁ o—. wc. mo. 3. mo. o

66

0S¢
Gl¢




67

ETETRN
3JU3J3J4Lp d3LULS AQ MO[S PLISLAUL JOJ X YILM UOLIRLJIBA 3UNSSaLd 6°G *BLJ

E.x
oV 80° 90’ 124 c0 0
—-d-wq-d-—1--A--—d--—.QW-—-u_d—-q-—-dd—- m
- — \/ — 1 Ol
N ... :
PN 39
P 402
| N ]
\ [ N .
N oo
o J0E GWN'd
\ __ 4 6€
[ ]
/ | . QV
\J :
“82 ||||| EOO.NH> ..m m.v
_oeo,  TTTmmmmees wo QL =A k
Me6e="1 W 00 = A wom

we o= "d | c0L X 6§




68

*awayls
30U3J341p 331Ul AQ MO|S PLISLAUL JOJ X Y1ILM uorjetaea A3tsuag 01°G °*6Hi4

v Jwbyd
L2
0¢’
%58
og’
6¢




.6 e Carter

Y/L

0 5 10 15 20 25 30
T

Fig. 5.11 Temperature vs. y at exit plane for flat plate.
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Fig. 5.12 Streamwise velocity vs. y at exit plane for flat plate.
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Table 5.1

Flat Plate Test Data

Properties Values Dimensions
P_ 7.0 N/m?
T, 216 0K
u velocity 882 m/s
v velocity 0.0 m/s
Rel 1000.0

Pr 0.72

Cp 1000.0 J/kg K
Cy 714.0 J/kg K
L 0.15 m
Grid 51x51
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could accurately predict the pressure profiles through the channel, but
it is not capable of predicting the temperature or velocity profiles.
It was found that the Jameson scheme with Dampl is capable of solving
the viscous flow for a Reynolds number of up to ten thousand. For flows
with Reynolds numbers on the order of a million and above, the viscous
properties could not be predicted accurately. Dampl was originally
developed for the solution of inviscid flows on a grid with an aspect
ratio of order one. For the solution of viscous flows, it is not
unusual to have a grid with an aspect ratio on the order of two to
three. This non-uniformity creates an excessive amount of damping in
the flow direction and insufficient damping in the normal direction.
Various investigators [36, 54] have suggested different techniques to
make the damping uniform in both directions. It was found that by
substituting at, and Atyinstead of at in Eq. (4.23), that the damping
became more uniform; this could also be achieved by substituting o
instead of P in Eq. (4.24). Of course, this modification requires the
readjustment of coefficients, k(2) and k(4) in Egs. (4.25). By
employing Damp2 instead of Dampl, the scheme became nonoscillatory,
robust, and more accurate. The solution was obtained for Reynolds
numbers of one million and ten million with two different grids. The
results showed the same trend as the results of finite difference

scheme.

Figures 5.14-5.19 illustrate the pressure and temperture profiles
for 51x51 and 101x51 grids and for freestream properties of P_ = .1 atm,
T =293K, and M_ = 5, Figures 5.14 and 5.15 illustrate the pressure
profiles at the lower wall and the center of the channel, and Fig. 5.16

represents the pressure at the upper wall. The temperature profiles at
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these locations are plotted in Figs. 5.17-5.19. Reducing the number of
grid points in the flow direction resulted in higher temperatures and
Tower pressure through the shock within the boundary layer. This is due
to the excessive amount of artificial viscosity 1in the streamwise
direction. ‘For optimum results, grid must be compressed in the
streamwise direction for the high gradient regions to reduce the grid

aspect ratio.

The viscous flow properties were calculated by the finite
difference and finite volume schemes; the results are compared with the
calculations performed by Chakravarthy [55] using the Roe scheme. The
pressure profiles are illustrated in Figs. 5.20-5.22 for the same three
locations across the channel as in Figs. 5.14-5.19. The calculated
results predict a pressure jump at the inlet, which 1is caused by the
presence of a shock from the leading edge of the channel. Downstream of
the channel on the lower wall there is an increase in the pressure. A
close examination of the results showed that due to the interaction of
leading edge shock with the shock and expansion fans from the
compression-expansion corners, the velocity vector in that region has an
angle less than one degree with the boundaries. The interaction of the
flow with the lower wall creates a series of Mach waves which causes a
small increase in the pressure. On the upper wall in the shock boundary
layer interaction region, the pressure predicted by the finite
difference scheme shows an oscillation. The calculated results compare
very well with the Roe scheme. Figures 5.23-5.25 illustrate the
streamwise velocity for the same locations as pressure. At the
compression corner, the MacCormack scheme shows the flow to be

separated, while the other two schemes predicted the same trend but the
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flow was not quite separated. The shock interaction with the upper
boundary creates a small separation bubble. The flow is fully separated
at X/Ly = 0.7; this is predicted by all three schemes. The streamwise
velocity illustrated in Figs. 5.24 and 5.25 indicate that the Jameson
scheme predicts a decrease in velocity before the shock and the
separation region. This is due to the excessive amounts of artificial
viscosity in the neighborhood of shocks when the grid spacing is large
in streamwise direction. To reduce the excessive amount of streamwise
dissipation in the shock vicinity, the scaling factor (Ea. (4.23)) rust
be reduced. This can be achieved in two ways, one by reducing the grid
cell area and the other by increasing the time step in the flow
direction. Reducing the grid cell area in the shock vicinity requires
more grid points. However, if there are enough points in the flow
direction, this can be achiéved by compressing the grid in the flow
direction. For the highly stretched grid, it is recommended that R be
scaled (Eq. (4.23)), with respect to local At for the flow direction
and local Aty in the normal direction as opposed to AtCFL which was
used in this study. Also, the results calculated using the finite
volume scheme predict a faster drop in the velocity near the leading
edge than the Roe's scheme.

Temperature profiles are shown in Figs. 5.26-5.28. Temperature is
the most sensitive and difficult property to predict accurately. In the
finite difference calculations, temperature is strongly dependent on the
implication of the boundary conditions. In this work, it is assumed
that the walls are adiabatic. This could be enforced by either
aT/ay | = 0 or aH/3y} = 0 (Appendix E). The above results were
obtaineﬂ—%y enforcingnghe zero temperature gradient. The same trends

are predicted by all three schemes. The approximate temperature
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recovery factor for compressible laminar flow with M_ = 5 and Pr = 0.72
is 5.25 [56]. This value is predicted by the Jamesorn and Roe schemes
towards the channel outlet. The above recovery factor can be predicted
with the finite difference scheme by enforcing the zero enthalpy
gradient at the boundary. Figures 5.29-5.31 illustrate the temperature
profiles when zero enthalpy gradient was enforced for the finite
difference scheme. Temperature increases very rapidly at the Tleading

edge due to the flow stagnating from the free stream within one grid

spacing.

5.2 Reacting and Radiating Flows

Before proceeding into the evaluation of the radiative heat
transfer, the performance of the finite volume and difference schemes 1is
compared for chemically reacting flows. Premixed hydrogen-air with an
equivalence ratio of unity flows through a channel (Fig. 5.32) with a
ten degree compression corner, and freestream conditions, P_ =1 atm,
T, = 9000k, M_ = 4. A switch is built into the code to prevent
chemical reaction for temperatures below 1000°K. The results for 0, and
H,0 are plotted for two different locations across the channel in Figs.
5.33 and 5.34. Due to the high temperature in the boundary layer, the
flow is ignited before the shock, but outside the boundary layer there
is no chemical reaction in the flow before the shock wave. The finite
difference scheme shows oscillatory behavior near the shock. The

results predicted by both schemes are seen to be in a good agreement.

Radiative flux is a strong function of temperature and pressure
gradients. The temperature gradient over a grid spacing is greater in

the normal direction than the streamwise direction. Therefore, it is
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Fig. 5.32 Geometry and flow conditions for chemically
reacting and radiating flow case.
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reasonable to assume that radiative heat transfer is negligable in flow
direction. However, in general, this is not the case because the global
gradient of the temperature has a significant effect on the radiative
flux. Three different geometries are employed for various parametric
studies. One is a channel with two parallel plates a distance L apart
(Fig. 3.2); the other is a channel with a ten degree compression-
expansion ramp at the lower boundary (Fig. 5.1). The third geometry is
a channel with a compression corner at the lower boundary (Fig. 5.32).
For the temperature range expected 1in the scramjet combustor, the
important radiating species are OH and Hp0.  The spectral information
and correlation quantities needed for these species are obtained from
Ref. 20. Both reacting and nonreacting flows are considered. Results
for the nonreacting, one-dimensional radiative transfer are presented in
Figs. 5.35-5.38. Completed information on one-dimensional radiative
transfer with chemical reaction is provided in Ref. 43. Selected
results of the one-dimensional radiative transfer analysis are discussed

here briefly.

For the parallel plate case (3 cm x10 cm), the inflow conditions

are P =1 atm, T_ = 1700k, M = 3.0, and fH 0~ 0.5, fO = .1 and
N T 0.4, Results for the radiative flux, as a function of the
2

nondimensional location along the flow, are illustrated in Fig. 5.35 for

f

various distances from the lower plate. It is noted that the radiation
flux is approximately zero in the center of the channel (y = 1.5 ¢m) and
is significantly higher towards the top and bottom of the plates. This,
however, would be expected because of the symmetry of the problem and
the relatively higher temperature near the boundaries. The variations

in the radiative flux are due to the leading edge shock interaction with

the boundaries.
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The results for radiative flux are illustrated in Figs. 5.36 and
5.37 as a function of the nondimensional y-coordinate. For P = 1 atm,
the results presented in Fig. 5.36 for different water vapor
concentrations indicate that the radiative interaction increases stowly
with an increase in the amount of the gas. The results for 50% Ho0 are
illustrated in Fig. 5.37 for two different pressures (P°° =1 and 3 atm)
and x-locations (x = 5 and 10 cm). It is noted that the increase in
pressure has dramatic effects on the radiative interaction. The
conduction and radiation heat transfer results are compared in Fig. 5.38
for P = 3 atm and for two different x-locations (x =5 and 10 cm). The
results demonstrafe that the conduction heat transfer is restricted to
the region near the boundaries and does not change significantly from
one x-location to another. The radiative interaction, however, is seen
to be important everywhere in the channel, and this can have an
influence on the entire flowfield. The results presented in Figs. 5.36-
5.38 should be physically symmetric, but due to the predictor-corrector
procedure used in the MacCormack's scheme, they exhibit some unsymmetri-

cal behavior.

For the parallel plate geometry, a comparison of the divergence of
radiatve flux for general (nongray), gray and their optically thin limit
models is presented in Fig. 5.39 for two different y-locations (y = 0.2
and 1.5 cm). The inflow conditions are P_ = 1 atm, T = 1700K,
Mo = 4.3. The gray gas formulation is based on the planck mean
absorption coefficient which accounts for the detailed information on
different molecular bands. As such, this approach is referred to as the
"pseudo-gray formulation." The magnitude of optical thickness

calculated for this case (0.003 < t < 0.4) shows that the radiation
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regime is in the optically thin limit. The gray, nongray, and optically
thin 1imit formulation are employed, and results confirm that the
radiation regime 1is in the optical]y. thin Tlimit. For the physical
conditions of the problem, no significant difference in results is
observed for the two y-locations. The solution of the gray formulation
in ODE form proves to be about ten times more efficient than the
solution of the general formulation on the vector processing computer
(the gray formulation uses 0.056 CRU's per iteration, while the general
formulation uses 0.57 CRU's per iteration). The optically thin
formulation is slightly more efficient than the gray formulation. All
other results presented in this study have been obtained by using the

pseudo gray gas formulation.

To investigate the effects of radiative energy tranfer in
chemically reacting flows, premixed hydrogen and air with an equivalence
ratio of unity was selected. Specific results are obtained for one- and
two-dimensional radiative transfer with the physical ceometry of Figs.
5.1 and 5.32, respectively. For the one-dimensional radiative transfer,
the 1inlet conditions considered are P_ = 1 atm, Tco = 1700, Hw = 4,5,
For the physical conditions of the problem, the radiation participating
species produced due to the chemical reaction essentially are OH and
Ho0. The radiative interaction is started at about X/L, = 0.20 to make
sure that there are significant amounts of OH and H,0 produced by the
reaction for active participation. This restriction was removed later
and radiative interactions start at the inlet for the remaining
results. The pressure contours for the flow without and with chemical
reaction are shown in Figs. 5.40 and 5.41. A comparison of the pressure

contours shows that the shock angle has increased in the case of the
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reacting flow. This is due to a relatively thicker boundary layer and

changes in the thermophysical properties of the mixture.

The variations in species concentration along the channel are
illustrated in Fig. 5.42 for chemically reacting, and chemically and
radiating flows. It is found that due to the radiative interaction, the
concentration of OH increases by about five percent and the concentra-
tion of H,0 decreases by the same amount. It should be noted that the
radiative interaction has no significant effect on 0, and Ho.  The
effect of radiatve heat transfer on the temperature is almost
negligible.

The effects of two-dimensional radiative transfer in chemically
reacting flows was investigated for the physical problem of Fig. 5.32.
Premixed hydrogen and air with an equivalence ratio of unity, and inlet
conditions of P_=1 atm, T_-= 900 K, M_= 4.0 were selected.
Figures 5.43-5.46 are the contour plots of the reactants and products.
As expected, the destruction and production of the species occurred only
in the boundary layers and after the shock, where the temperature is
greater than 1000 °K. Figures 5.47 and 5.48 are contour plots of the
pressure without and with chemical reaction. It should be observed that
the compression shock is curved when chemical reaction takes place. A
series of shock waves is created due to the pressure increase caused by
a sudden heat release from chemical reaction. Interaction of these

shock waves with compression shocks increases the shock strength, and

this causes the shock to curve.

Figure 5.49 illustrates the variation of nondimensional y-radiative

flux for several locations across the channel. The radiative flux in
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the y-direction is neglegible before the shock; this is due to the
almost symmetrical condition and lower pressure and temperature. The
radiative flux substantially increases after the shock due to the
increase in participating species, pressure, and temperature. Radiative
flux decreases away from the lower boundary due to the reduction 1in
temperature. The radiative flux in a streamwise direction is
illustrated in Fig. 5.50. It peaks at a short distance from the
boundary and then gradually decreases toward the center of the
channel. The peak is due to the pressure gradient caused by the leading
edge bow-shock. The radiative flux (qry) remains constant in the region
with no chemical reaction, and gradually decreases in the region with
chemical reaction. The reduction in gp, is caused by cancellation of

fluxes in positive and negative directions.

Figures 5.51 and 5.52 illustrate the radiative flux for the same
inlet conditions as in Fig. 5.32 but for the 150 compression corner.
Comparing the results of Figs. 5.49 and 5.51, it is noted that, due to
the increase of shock strength, the radiative flux in y-direction has a
steep gradient through the shock. After the shock, it gradually
decreases as some of the radiative flux from Tlower boundary gets
canceled from the radiative flux of the upper boundary layer. Figure
5.52 is the illustration of the streamwise flux along the channel for
several locations across the channel. Comparing the results with the
results of Fig. 5.50, it is noted that the radiative flux increases

considerably with increasing the shock angle.

Figures. 5.53 and 5.54 illustrate similar results as presented in
Figs. 5.49 and 5.50 for the same freestream conditions but for M_ = 6.

By increasing the Mach number the shock angle decreases. As a result,
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there is no chemical reaction at y = 0.5 cm. Therefore, streamwise
radiative flux at this location reduces to zero. It is noted that the

radiative flux increases substantially by increasing the Mach number.

Figure 5.55 illustrates the variations in species mass fraction for
two locations (y = 0.02 and 0.2 cm) across the channel. At y = 0.02 cm,
where the value of total energy is reduced by the qp, (qu direction is
from outlet to inlet), less H,0 is produced. After the shock, more H,0
has been produced, for both locations because the total energy is
increased by Ry It should also be noted that at locations where the
total energy is reduced less of the reactant (05) is used (Fig. 5.56).
The temperature variation for chemically reacting, and reacting and
radiating flows along the channel are illustrated for two locations (y =
0.02 and 0.2 cm) in Fig. 5.57. At location y = 0.02, where the value of
dpy 1S greatest in comparison to the other locations, the temperature
has been reduced. At y = 0.2, there is no change in the temperature
before the shock because there are no paticipating species. After the

shock, temperature has slightly increased over the nonradiating case;

this is due to the contribution from dRy*
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Chapter 6

CONCLUSIONS

Based on the theory and computational procedure that have been
described, two algorithms were developed to solve the continuity,
momentum, energy, and species continuity equations for nonreacting,
reacting, radiating and reacting supersonic channel flows. The finite
volume algorithm with the appropriate damping scheme proved to be
accurate, non-oscillatory and robust for reacting and nonreacting,
viscous and invsicid flows. .The supersonic viscous and inviscid flows
in a channel with ten degree compression-expansion ramps at the lower
wall were solved by both the finite-volume and finite-difference
schemes. The results of viscous flow were compared with the results of
the upwind scheme of Roe. The finite-volume scheme required more grid
points in the boundary layer and shocks than did the finite difference
scheme. There is an excessive amount of artificial viscosity due to the
highly stretched grid in the boundary layer, near high gradient regions
(1ike compression or expansion corners). However, this problem can be
alleviated by increasing the grid points in the high gradient regions in

the flow directions.

The supersonic pre-mixed hydrogen-air flow with equivalence ratio
of unity was solved by both finite difference and finite volume schemes
in a channel with a ten degree compression corner. The flow was ignited
by the shock wave from the compression corner. The results of finite

127
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volume scheme compared very well with the results of the finite
difference scheme. Finite volume scheme did not show the oscillation

which was observed in the finite difference solution.

In the hypersonic propulsion system, the temperature ranges from
one to five thousand degrees Kelvin. In this range, various nonsym-
metric molecules become highly radiative participating. One-dimensional
radiative flux was included in the energy equation for the solution of
nonreacting supersonic flows between parallel plates. It was concluded
that the radiative flux increases with the increase of pressure,
temperature, and participating species. In the case of flow without
chemical reaction, most of the energy transferred was by convection in

the direction of flow. As a result, the radiative interaction did not

affect the flow field significantly.

Finally, two-dimensional radiative interaction was investigated for
supersonic chemically reacting flow in a channel with a compression
corner, Some important results were obtained by considering the
radiative flux in both directions. The results revealed that radiation
can have a significant influence on the entire flow field; however, the
influence is stronger in the boundary layers. It was found that due to
the temperature increase by chemical reaction, radiatve transfer in the
streamwise direction can have a significant effect on the flow field.
Radiative heat transfer is a strong function of the pressure
pathlength. By increasing the dimensions from the model geometry to
physical geometry, pathlength and, therefore, radiative heat transfer
will increase. It is concluded that radiative heat transfer in the
hypersonic propulsion can have a significant effect on the entire flow

field. It was also found that the numerical scheme based on the pseudo-
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gray gas formulation for the radiative flux is highly efficient as
compared to the scheme based on the nongray formulation, especially for
the vector processing computers (over ten times). It is concluded that
for the supersonic chemically reacting flows the radiation is in
optically thin 1limit for the physical conditions considered in this
study.

It is suggested that future study include grid adaption to the
finite volume scheme for better shock resolution. For steady state
solution, it is suggested that the multi grid and residual smoothing be
used to speed up the convergence. The effect of radiative heat transfer

in non-premixed chemically reacting flow should also be investigated.
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APPENDIX A

DERIVATION OF CONDUCTION HEAT FLUX TERMS

To simplify Egs. (2.3) to Egs. (2.4), the Lewis number is assumed
to be unity. This simplification fis carried out in detail for Eq.
(2.3b) and the same is applied to Eq. (2.3a). Using the expressions for

the thermal diffusivity (a) and Lewis number (L.), Eq. (2.3b) can be

expressed as

= K/pC
a pp
L, = a/D
of .
aT i
=-oD(L C —+ —h, A.
qcy oD ( e 503y 121 v 1) (AR.1)

Defining the binary diffusion coefficient D in terms of the Prandtl and

Lewis number Eq. (A.1) can be expressed as

Pr = v/a
D=2 = v/Pr u

T._e- le p?l‘ Le

m af.

...k 3T _1

qcy Br [Cp 5y + 121 55 hi] (A.2)
where

- m

-1 f ¢

P o P
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m o
n= z D)+ [ Cp ol (A.3)

It should be noted that n s a dummy variable employed to evaluate the

sensible enthalpy. Using the Leibnitz formula, Eq. (A.3) s
differentiated to obtain
m T af . ah9
ah ) i i
L O+ [ ¢ dn) —— + f. —
U UR IR
T BCp.(n) T
1 9
+ f, fo 5y dn + f. Cpi (T) 37] (A.4)

The coefficients of the first differential on the right hand side is

equal to h; and the second and third terms are identical to zero,

therefore, Eq. (A.4) reduces to

. f
sh _ ™ a4 3T
2= g [hy—+fC =]
W =1 y v R

or
3

m f.

sh o oot A (A.5)

- _u 3h
Aey Pr oy
or
N 11
ey 'E_ray
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APPENDIX B

RADIATIVE FLUX EQUATIONS FOR NONGRAY GASES

In this appendix, Eqs. (3.27) and (3.28) are rearranged and written

as they are expressed in [12]. The first integral in Eq. (3.27) can be

written as
y ] ' ] 1 y ! ! ] !
fo e (¥ A (y-y')dy" = fo le,(¥') - evcll A'(y-y')dy
y ' ' t
F ey IO A'(y-y') dy
- y ' 1 ' ' vy
fo [e,c(y") - evcl]A (y-y')dy' - e . Aly-y')[g
y
= Io [e,c(¥') - evCI]A'(y-y')dy' - evclA(O)
+e . Aly) (B.1)

The second integral in Eq. (3.27) can be written as

L L
Iy evc(y')A'(y'-y)dy' = Iy [evc(y') - evc2] A'(y'-y)dy'
L
+ fy evczA'(y'-y)dy'
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L
= fy [e  (y") - evCZJA'(y'-y) dy' + evczA(y'-y)|;
L
- Iy [e o (y') - e, A (y'-y')dy" +e . A(L-y)
-e A (B.2)

Upon substituting Eqs. (B.1) and (B.2) into Eq. (3.27), the result can

be written as

AL y 1 AI ]
(L-y) + fo [e  (y") - evcll (y-y")

B el - e2 - evcl Aly) + evC2

L
+ evclA(y) - Iy [e  (y') - echJ At (y'-y)dy" - evczA(L-y) (B.3)

Equation (B.3) can be simplified to

v

L
. C1]A'(y-y')dy' - fy[evc(y')

Yy
q. = e, - e, + fo [evc(y') -e

- echJA'(y'-y) dy (B.4)

Equation (B.4) is the same as Eq. (3.29) if it is written for multi-band
gaseous system. The first integral in Eq. (3.28) can be written as

y y
fotevc(y) - e (y")IA (y-y')dy' = jote\,c1 -e (¥ A (y-y')dy'

y
<[ Teye - e, Iy ey



[

L

Y

[e

vC

e
vC

(y')IA (y-y')dy' + [e . +e_ (y)]A'(y-y')
vCl vC 0

Y

- ey A (y-y)dy! + Te - e (y)]AY(O)

- [e

\JC1
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1
- e (¥)] A (y) (B.5)
The second integral in Eq. (3.29) can be written as
L
(y) - evc(y')]A"(y'-y)dy' = [evc2 - evc(y')A"(y'-y)dy'
y
L
-/ [evc2 - e () IR (y-y")dy
y
L
=] [evcz - e (y)IAT (y'-y)dy
y
] ] L
- [e\,C2 - e Ay)IAt(y'-y) y
L
=] [e\,C2 -e (y")IAT(y'-y)dy’
Y
- [evC2 - e (y) At (L-y)
= [e\,c2 - evc(y)]A'(O) (B.6)



Substituting Eqs. (B.5) and (B.6) into Eq. (3.28) can be written as

v

vq, = e . (¥) - evCIJA'(y) + [e (y) - evczlA'(L-y)

y
- fo [e”°1 - e (y") A (y-y")dy’
- [e\)C1 - e (y)JA'(0) + [e\)cl - e (y)IA'(y)
L 1 " t 1
- Iy [evcz e (¥ (y'-y)dy
+ [evC2 - e (¥)JA'(L-y) - [evcz - e (y)JAT(0)

Equation (B.7) can be simplified and written as

v, = [(e .(y) - evcl) + (e, (y) - evcz)A'(O)

L

y
+ IO Ce,c(y") - evcllA"(y-y')dy' + [ le,ly') - evCZJA"(y'-y)dy'

Y
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(B.7)

(B.8)

Equation (B.8) is exactly like Eq. (3.30) if it is written for a multi-

band system.
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APPENDIX C

COMPONENTS OF JACOBIAN MATRIX

In this appendix, the species matrix in the left hand side bracket
of Egs. (4.8) and (4.14) is evaluated. The source term is function of
density, temperature and various species. In evaluating %%3 the density
and temperature dependency is neglected for computational efficiency.
Eklund et al. [57] evaluated the species Jacobian matrix with and
without density and temperature dependency and found no difference in

the steady state solutions.. The components of Jacobian matrix are as

follows:

2. _x ¢ (C.1)

2. (c.2)




" 1
ol My
2 2
S K 7 Gy
woz 1 ﬁz 2
9
"2, 2
3U b. M H.0
WHZO 2 "HO 2
9 H2 )
_f-._.K_ C -K.C
aqu f, 0, T f, OH
awH2 MH2 HH
L2k =S¢ -2 —C
Uy b, Ty O £, T
oy
._.E_.=O
I
X
3 H,0
% - .4k ¢C
aquo b, H,0
My 0 " o
U, f, T O
b':z r12
My o H,0
=4k —c C
Uy f, Ty OH H,
Moy Mon
2R Y
0, 270, 2
L
U - b. M H_0
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FA T T N AL
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(C.5)

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)
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APPENDIX D

RADIATIVE FLUX EVALUATION FOR PSEUDO GRAY MODEL

This appendix shows the discretization and evaluation of the
radiative flux for the y-direction. The same thing can be applied in
the streamwise direction. Equations (3.17) and (3.18) in the y-

direction are written as follows:

d q.(y)
— 3 k2(y) a,ly) = 3K(y) L) (D.1)
dg_(y)
1 1 r -
K(y) (EI - 3)4.(y) ' 0T 3Tw \y-O =0 (D.2)
dq
1 1 1 r -
K(y) (52 2) qr(Y) ‘y=L + Idy yul 0 (D.3)

The above equations are discretized by central differencing. The second

derivative of g, in the physical domain is discretized as

2
d :r - % [qj+1 = qj - qj - qj_ll (D 4)
. (148 . . . . .
dy j AyJ( 837 By BY; AY 5
here
" R TS Wl
AyJ yJ yj'l J .YJ' = ‘yj-l

Equations (D.1-D.3) in discrete forms are written as

2 2 1 1 9 2
—_—q,, - [ ( + )+ ?'K'] q
Azyj(1+8j) J-1  Cay;(1+8;) “By ay;  AYy MR
e. ,.~-e. e.-e,
2 j#1 7§ .3 g1
$——t g, = 15K, | + ] (D.5)
Ay§(1+s-)sj i+ SRS RS B



11 1 ] )
[Kl(zq" 7) * §3}11 N T Ty 9, = 0

1 1 1 1
B 3AyJ Gg-1 ¥ [(EE -7 Kt §Ayd] %

The above can be written in matrix form as

where

A B 0 seeeeeessses O a, Ry
1
C A B 0 vieeeee O . R,
. ) q = :
: o ¢ A B r-1 :
0 ® 9 0 ¢ 00 0 ® 0 0 0 C A qu RJ
_ 1 1 1
Mtk (EI -7 ¢ Ty,
2 1 1 9 2 .
A, .= -] . ( + ) -7 K] §=2,0-1
i, ij(l ej) BjAY5 Y5 T
1 1 1
Ay = Ki(=-3)+
1, Ne, 72 38y,
_ 1
31,2 c T 34y,
B‘l j =___2__2__._ Jj =3’J
? ij(1+sj)sj
Ci " __7731——__ j=2,0-2
’ Ay {(1+48.)
j J
c .1
i,d-1 3Z73
Rl = 0'

145

(D.7)

(D.8)
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5 87, 57

e
f

RJ = O-
The tri-diagonal matrix on the left hand side of Eq. (D.8) is solved

efficiently by the Thomas algorithm.
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APPENDIX E

BOUNDARY COMDITIONS FOR ADIABATIC WALL TEMPERATURES
The adiabatic wall condition is given as

gl ‘ - %%-‘ = 0 (E.1)
Y ly=0 y=0

Substituting for the total enthalpy, its gradient is written as

8H|
W ly=0

(C,T + (W2 + v2)/2)' o0 (E.2)
y=

2l

The velocity terms (u, v) are equal to zero at the boundary for the

viscous fluid. Assuming specific heat is a constant Eq. (E.2) reduce to

aH aT

=C_ — ‘ (E.3)
Y ly:O pay y:O

Specific heat is a constant, therefore, temperature gradient rust be
equal to zero. For Pr = 1 total enthalpy remain constant, while for
variable Prandtl number total enthalpy changes, the gradient remains

very small. Therefore, at the solid boundary, one can enforce the zero

enthalpy gradient by setting

Hy = H (E.4)

Substituting the relation for total enthalpy Eq. (E.4) is written as

. 2 2
Cp Tw = Cp T1 + (u1 + vl)/2 (E.5)



Therefore, the adiabatic wall temperature can be approximated by

2 2
+ (uy + vl)/2 Cp .
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(E.6)



